
Honors Computer Programming 1-2
Introduction To Chapter 6

Iteration

Chapter Goals

 To be able ___

 To avoid __

 To understand __

 To ___

While Loops

In this chapter we will look at programs that _______________ execute one or more statements. Suppose we open a bank account

with an initial deposit of $10,000. The account earns 5% interest with the interest calculation at the end of each year and then

deposited into the bank account. How many years does it take for the balance to reach $20,000?

In Java, the _________ statement implements a repetition. A while statement executes a __________________ repeatedly. A

________________ condition controls _______________ the loop is executed. The general form of the while statement is:

while(condition)

 statement

In our case we want to know when the bank account has reached a ________________ . While the balance is ______ we keep

______________ interest and incrementing the ________ counter:

while(balance < targetBalance)

{

 years++;

 double interest = balance * rate / 100;

 balance = balance + interest;

}

Here is the complete program that solves our investment problem:

public class Investment

{

 public Investment(double balance, double rate) // constructor

 {

 this.balance = balance;

 this.rate = rate;

 years = 0;

 }

 // accumulates interest until a target balance has been reached

 public void waitForBalance(double targetBalance)

 {

 while (balance < targetBalance)

 {

 years++;

 double interest = balance * rate / 100;

 balance = balance + interest;

 }

 }

continued on the next page

 // gets the current balance

 public double getBalance()

 {

 return balance;

 }

 // gets the number of years this investment has accumulated interest

 public int getYears()

 {

 return years;

 }

 private double balance;

 private double rate;

 private int years;

}

public class InvestmentTest1

{

 public static void main(String[] args)

 {

 final double INITIAL_BALANCE = 10000;

 final double RATE = 5;

 Investment invest = new Investment(INITIAL_BALANCE, RATE);

 invest.waitForBalance(2 * INITIAL_BALANCE);

 int years = invest.getYears();

 System.out.println("The investment would be doubled after " + years + " years");

 }

}

A while statement is often called a _______ . The flowchart shows that the control loops

 ________________ to the ______ after every _______________ .

The while loop shown below

while (true)

{

 body

}

executes the _______ over and over without ever ________________ . Some programs never exit

(examples _____________________________ or _______________________) but our programs

are not usually of that kind. But even if you can't terminate the loop, you can _________ from the

method that contains it.

Infinite Loop Error

The most annoying loop error is an ____________________ which is a loop that can only be stopped by killing the program or

restarting the computer.

A common reason for infinite loops is forgetting to advance the variable that _______________ the loop:

int years = 0;

while (years < 20)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

Here the programmer forgot to add a _____________ command in the loop. As a result the value of years always stays _____ ,

and the loop never comes to an _______ .

do Loops

Sometimes you want the body of a loop to execute __________________ and perform the

_____________ after the body was executed. The _____ loop serves that purpose.

do

 statement

while (condition);

For example, suppose you want to make sure that a user enters a positive number. As long as the user

enters a _____________ number or _______ just keep prompting for a correct input. In this case,

a ______________ makes sense because you need to get a user input ___________ you can _____________ .

double value;

do

{

 String input = JOptionPane.showInputDialong("Enter a positive number");

 value = Double.parseDouble(input);

}

while (value <= 0);

In practice, this situation is __________________________ . You can always replace a _____ loop with a _________ loop by

introducing a ______________ control variable.

boolean done = false;

while (!done)

{

 String input = JOptionPane.showInputDialog("Enter a positive number");

 value = Double.parseDouble(input);

 if (value > 0)

 done = true;

}

For Loops

The most common loop has the form:

Because this form is so common

there is a special form for it that

emphasizes the patterns

You can also _____________ the

loop counter inside the for loop

header:

Let us use this loop to find out the size

of our $10,000 investment if 5%

interest is compounded for 20 years.

Remember that $500 is added every

year.

i = start;

while (i <= end)

{

 ...

 i++;

}

for (i = start; i <= end; i++)

{

 ...

}

for (int i = start; i <= end; i++)

{

 ...

}

for (int i = 1; i <= n; i++)

{

 double interest = balance * rate / 100;

 balance = balance + interest;

}

Below is the code for Investment.java and InvestmentTest.java with an additional method waitYears that contains a for-

loop.

public class Investment

{

 public Investment(double balance, double rate) // constructor

 {

 this.balance = balance;

 this.rate = rate;

 years = 0;

 }

 // accumulates interest until a target balance has been reached

 public void waitForBalance(double targetBalance)

 {

 while (balance < targetBalance)

 {

 years++;

 double interest = balance * rate / 100;

 balance = balance + interest;

 }

 }

 // keeps accumulating interest for a given number of years

 public void waitYears(int n)

 {

 for (int i = 1; i <= n; i++)

 {

 double interest = balance * rate / 100;

 balance = balance + interest;

 }

 }

 // gets the current balance

 public double getBalance()

 {

 return balance;

 }

 // gets the number of years this investment has accumulated interest

 public int getYears()

 {

 return years;

 }

 private double balance;

 private double rate;

 private int years;

}

public class InvestmentTest2

{

 public static void main(String[] args)

 {

 final double INITIAL_BALANCE = 10000;

 final double RATE = 5;

 final int YEARS = 20;

 Investment invest = new Investment(INITIAL_BALANCE, RATE);

 invest.waitYears(YEARS);

 double balance = invest.getBalance();

 System.out.printf("The balance after %1d years is $%,1.2f%n", YEARS, balance);

 }

}

 The three slots in the for header can contain any three expressions. You can count __________ instead of ____ :

 for (years = n; years > 0; years--) ...

The increment or decrement need not be in steps of _____ :

 for (x = -10; x <= 10; x = x + 0.5) ...

It is possible, but a sign of __________________ , to put _________________________ into the loop:

 for (rate = 5; years-- > 0; System.out.println(balance)) ... // Bad taste

You should stick with for loops that ______________ , __________ , and ____________ a single variable.

Use for Loops For Their Intended Purpose Only

A for loop is an __________ for a _________ loop of a particular form. A ____________ runs from the _______ to the _____

with a ____________ increment:

for (set counter to start; test whether counter at end; update counter by increment)

{

 ...

 // counter, start, end, increment not changed here

}

If your loop doesn't match this pattern, don't use the _______ construction.

Scope of Variables Defined in a for Loop Header

It is legal in Java to declare a variable in the ____________ of a for loop. Here is the most common form of this syntax:

for (int i = 1; i <= n; i++)

{

 ...

}

// i no longer defined here

The scope of the variables extends to the ______ of the for loop. Therefore, ___ is no longer defined when the loop ends. If you

need to use the value of the variable beyond the end of the loop, then you need to define it ___________ the loop.

In the loop header, you can declare multiple variables, as long as they are of the ________________ and you can include multiple

___________________ separated by ______________ :

 for (int i = 0, j = 10; i <= 10; i++, j--) ...

Many people find it ______________ if a for loop controls more than one ______________ . It is not recommended to use this

type of for statement. Instead, make the for loop control a ___________ counter and ______________ the other variable

explicitly.

int j = 10;

for (int i = 0; i <= 10; i++)

{

 ...

 j--;

}

A Semicolon Too Many

What does the loop at the right print? This loop is supposed to compute 1 + 2 + ∙∙∙ + 10

which is 55. But actually, the loop prints _____ .

int i;

sum = 0;

for (i = 1; i <= 10; i++);

 sum = sum + i;

System.out.println(sum);

Did you spot the ______________ at the end of the for loop? The loop really is a loop with an ____________________ .

for (i = 1; i <= 10; i++)

 ;

The loop does ______________ 10 times and when finished, sum = ____ and i = _____ . Then the

statement sum =sum + i; makes sum = ______ .

Nested Loops

Suppose you need to print the following triangle shape:

[]

[][]

[][][]

[][][][]

[][][][][]

[][][][][][]

[][][][][][][]

You have to generate a number of rows as shown at the right.

How do you make a triangle row? Use another ________ for the squares in that row.

Then add a ___________ at the end of the row. The ith row has i symbols so the

loop counter goes from ______________ . The code for a row is shown at the right.

Putting these two loops together yields two _________________ as shown at the

right.

The complete program is shown below.

for (int i = 1; i <= width; i++)

{

 // make a triangle row

 ...

}

for (int j = 1; j <= i; j++)

 r = r + "[]";

r = r + "\n";

for (int i = 1; i <= width; i++)

{

 for (int j = 1; j <= i; j++)

 r = r + "[] ";

 r = r + "\n";

}

public class Triangle

{

 public Triangle(int aWidth) // constructor

 {

 width = aWidth;

 }

 // computes a string representing the triangle

 public String toString()

 {

 String r = "";

 for (int i = 1; i <= width; i++)

 {

 // make a triangle row

 for (int j = 1; j <= i; j++)

 r = r + "[] ";

 r = r + "\n";

 }

 return r;

 }

 private int width;

}

public class TriangleTest

{

 public static void main(String[] args)

 {

 Triangle small = new Triangle(3);

 System.out.println(small.toString());

 Triangle large = new Triangle(6);

 System.out.println(large.toString());

 }

}

Processing Input

Suppose you want to process a set of values. For reading input, you can use the ______________________ method of the

JOptionPane class. Or you can use the _______________ method to read an int, the _________________ method to read a

double, the _________________ method to read a word , or the _________________ method to read a line of text all from the

Scanner class.

The loop shown at the right reads through input data. This loop is a little different from

earlier examples because the test condition is a variable _______ . That variable stays

_______ until you reach the end of ______________ ; then it is set to ______ . The

next time the loop starts at the top, done is _______ and the loop ________ .

There is a reason for using a variable. The test for loop termination occurs in the

____________ of the loop, not at the top or the bottom. You must first try to

_______________ before you can test whether you have reached the

___________________ .

Let's write a program that analyzes a set of values. This will use a class DataSet. You add values to a DataSet object with the ____

method. The ________________ method returns the average of all added data and the _____________ method returns the largest.

public class DataSet

{

 public DataSet() // creates an empty set

 {

 sum = 0;

 count = 0;

 maximum = 0;

 }

 public void add(double x)

 {

 sum = sum + x;

 if (count == 0 || x > maximum)

 maximum = x;

 count++;

 }

 public double getAverage()

 {

 if (count == 0) return 0;

 else return sum / count;

 }

 public double getMaximum()

 {

 return maximum;

 }

 public int getCount()

 {

 return count;

 }

 private double sum;

 private double maximum;

 private int count;

}

boolean done = false;

while (!done)

{

 String input = read input;

 if (end of input indicated)

 done = true;

 else

 {

 process input

 }

}

public class JOptionPaneInputTest

{

 public static void main(String[] args)

 {

 DataSet data = new DataSet();

 boolean done = false;

 while (!done)

 {

 String input = JOptionPane.showInputDialog("Enter value, Cancel to quit");

 if (input == null)

 done = true;

 else

 {

 double x = Double.parseDouble(input);

 data.add(x);

 }

 }

 System.out.println("Number of data values: " + data.getCount());

 System.out.println("Average = " + data.getAverage());

 System.out.println("Maximum = " + data.getMaximum());

 }

}

The method of exiting the loop using the ____________________________ is called the "Loop and a Half" method since loop exit

is in the middle of the loop. Another technique of exiting a loop that is preferred by some programmers involves the use of the

__________ statement. The break statement was used in chapter 5 to exit a __________ statement. A break can also be used to

exit a _________ , _____ , or ____ loop. In this example, the break statement is used to ______________ the loop when the

_________________________ is reached.

while(true)

{

 String input = JOptionPane.showInputDialog("Enter value, Cancel to quit");

 if (input == null)

 break;

 double x = Double.parseDouble(input);

 data.add(x);

}

Reading Data from the
Console

Reading from the console is done

with the ______________ class.

The code at the right is a modified

version of the input test with input

from the console.

Note that there is a

____________ to the user

__________ the while loop.

The loop continues to run until

__________ is changed to

______ .

public class ConsoleInputTest

{

 public static void main(String[] args)

 {

 DataSet data = new DataSet();

 Scanner console = new Scanner(System.in);

 boolean done = false;

 while (!done)

 {

 System.out.print("Enter value, Q to quit: ");

 String input = console.next();

 if (input.equalsIgnoreCase("Q"))

 done = true;

 else

 {

 double x = Double.parseDouble(input);

 data.add(x);

 }

 }

 System.out.println("Number of data values: " + data.getCount());

 System.out.println("Average = " + data.getAverage());

 System.out.println("Maximum = " + data.getMaximum());

 }

}

Reading Data Values from a File

The loop needs to be modified when reading an _________________ number of data values from a ________ . We will not use a

_______________ variable to control the loop. Instead, we will use the _______________ method or the ___________________

method of the Scanner class.

Code for the input test has been modified so that an unknown number of data items can be read from a file.

public class FileInputTest

{

 public static void main(String[] args) throws FileNotFoundException

 {

 DataSet data = new DataSet();

 FileReader reader = new FileReader("Data.txt");

 Scanner file = new Scanner(reader);

 while (file.hasNext())

 {

 int number = file.nextInt();

 data.add(number);

 }

 System.out.println("Number of data values: " + data.getCount());

 System.out.println("Average = " + data.getAverage());

 System.out.println("Maximum = " + data.getMaximum());

 }

}

Note that when reading data from a file, no ______________ are needed. And loop exit will eventually occur at the

___________________ of the loop.

String Tokenization

Sometimes it is convenient to have an input line that contains ___________ items of input data. Suppose an input line contains

two numbers: ________________ . You can't convert the string "5.5 10000" to a number but you can break the string into a

_____________ of strings, each of which represents a separate input item. There is a special class _____________________ that

can break up a string into items, or as they are called __________ . By default, the string tokenizer uses ______________

(__________ , _______ , ______________) as delimiters. For example, the string "5.5 10000" will be decomposed into two

tokens _______ and ___________ .

To tokenize a string, you need to construct a StringTokenizer object and supply the string to be broken up in the

________________ : StringTokenizer tokenizer = new StringTokenizer(input); . Then keep calling the

_____________ method to get the next token.

The loop below shows the proper technique. It uses the _____________________ method to ensure that there are still tokens to be

processed.

while (tokenizer.hasMoreTokens())

{

 String token = tokenizer.nextToken();

 ... // do something with token

}

If you want to use another separator, such as a ___________ to separate the individual values, you need to specify a second

argument when you construct the StringTokenizer object:

 StringTokenizer tokenizer = new StringTokenizer(input, ",");

Here is a modified version of the input test using the tokenizers:

public class TokenizerInputTest

{

 public static void main(String[] args)

 {

 DataSet data = new DataSet();

 String input = JOptionPane.showInputDialog("Enter several values:");

 StringTokenizer tokenizer = new StringTokenizer(input);

 while (tokenizer.hasMoreTokens())

 {

 String token = tokenizer.nextToken();

 double x = Double.parseDouble(token);

 data.add(x);

 }

 System.out.println("Number of data values: " + data.getCount());

 System.out.println("Average = " + data.getAverage());

 System.out.println("Maximum = " + data.getMaximum());

 }

}

Traversing the Characters in a String

The _____________ method of the String class returns an individual character as a value of type _______ . Recall that string

positions are numbered from ____ . The pattern for transversing a string is shown below.

for (int i = 0; i < s.length(); i++)

{

 char ch = s.charAt(i);

 do something with ch

}

Suppose you want to count the number of vowels in a string. The loop below carries out the task. Here we use the ____________

method of the String class. The call str.indexOf(ch); returns the first occurrence of ch in str or ____ if ch doesn't

occur in str.

int vowelCount = 0;

String vowels = "aeiouy";

for (int i = 0; i < s.length(); i++)

{

 char ch = Character.toLowerCase(s.charAt(i));

 if (vowels.indexOf(ch) >= 0)

 vowelCount++;

}

Symmetric and Asymmetric Bounds

It is easy to write a loop with i going from 1 to n: for (i = 1; i <= n; i++) . . .

The values for i are bounded by the relation ________________ . Because there are _____ comparisons on both bounds, the

bounds are called ______________ .

When traversing the characters of a string, the bounds are ____________________ :

 for (i = 0; i < s.length(); i++) The values of i are bounded by ______________________________

with a ≤ on the left and a < on the right. That is appropriate because ______________ is not a valid position.

Random Numbers and Simulations

In a __________________ you generate ________________ events and evaluate their outcomes. The _____________ class of

the Java library implements a random number generator which produces numbers that appear to be completely random. To generate

random numbers, you construct an object of the ___________ class and then apply one of the methods shown in the chart.

For example, you can simulate the cast of a die as shown. The call generator.nextInt(6) gives you a random number

between ________________ . Add 1 to obtain a number between __________________ .

Random generator = new Random();

int d = 1 + generator.nextInt(6);

The following is a dice program to give you a feeling of how to use random numbers.

 public class Die

{

 public Die(int s)

 {

 sides = s;

 generator = new Random();

 }

 // simulates the throw of a die

 public int cast()

 {

 return 1 + generator.nextInt(sides);

 }

 private Random generator;

 private int sides;

}

public class DieTest

{

 public static void main(String[] args)

 {

 Die d = new Die(6);

 // toss the die 10 times

 for(int i = 1; i <= 10; i++)

 {

 int n = d.cast();

 System.out.print(n + " ");

 }

 System.out.println();

 }

}

